
2 Boolean Arithmetic

Counting is the religion of this generation, its hope and salvation.

—Gertrude Stein (1874–1946)

In this chapter we build gate logic designs that represent numbers and perform

arithmetic operations on them. Our starting point is the set of logic gates built in

chapter 1, and our ending point is a fully functional Arithmetic Logical Unit. The

ALU is the centerpiece chip that executes all the arithmetic and logical operations

performed by the computer. Hence, building the ALU functionality is an important

step toward understanding how the Central Processing Unit (CPU) and the overall

computer work.

As usual, we approach this task gradually. The first section gives a brief Back-

ground on how binary codes and Boolean arithmetic can be used, respectively, to

represent and add signed numbers. The Specification section describes a succession of

adder chips, designed to add two bits, three bits, and pairs of n-bit binary numbers.

This sets the stage for the ALU specification, which is based on a sophisticated yet

simple logic design. The Implementation and Project sections provide tips and

guidelines on how to build the adder chips and the ALU on a personal computer,

using the hardware simulator supplied with the book.

Binary addition is a simple operation that runs deep. Remarkably, most of the

operations performed by digital computers can be reduced to elementary additions of

binary numbers. Therefore, constructive understanding of binary addition holds the

key to the implementation of numerous computer operations that depend on it, one

way or another.



2.1 Background

Binary Numbers Unlike the decimal system, which is founded on base 10, the bi-

nary system is founded on base 2. When we are given a certain binary pattern, say

‘‘10011,’’ and we are told that this pattern is supposed to represent an integer num-

ber, the decimal value of this number is computed by convention as follows:

ð10011Þtwo ¼ 1 � 24 þ 0 � 23 þ 0 � 22 þ 1 � 21 þ 1 � 20 ¼ 19 ð1Þ
In general, let x ¼ xnxn�1 . . . x0 be a string of digits. The value of x in base b, denoted

ðxÞb, is defined as follows:

ðxnxn�1 . . . x0Þb ¼
Xn

i¼0

xi � bi ð2Þ

The reader can verify that in the case of ð10011Þtwo, rule (2) reduces to calculation (1).

The result of calculation (1) happens to be 19. Thus, when we press the keyboard

keys labeled ‘1’, ‘9’ and ENTER while running, say, a spreadsheet program, what ends

up in some register in the computer’s memory is the binary code 10011. More pre-

cisely, if the computer happens to be a 32-bit machine, what gets stored in the regis-

ter is the bit pattern 00000000000000000000000000010011.

Binary Addition A pair of binary numbers can be added digit by digit from right to

left, according to the same elementary school method used in decimal addition. First,

we add the two right-most digits, also called the least significant bits (LSB) of the two

binary numbers. Next, we add the resulting carry bit (which is either 0 or 1) to the

sum of the next pair of bits up the significance ladder. We continue the process until

the two most significant bits (MSB) are added. If the last bit-wise addition generates a

carry of 1, we can report overflow; otherwise, the addition completes successfully:

0 0 0 1 (carry) 1 1 1 1

1 0 0 1 x 1 0 1 1

þ 0 1 0 1 y þ 0 1 1 1

0 1 1 1 0 xþ y 1 0 0 1 0

no overflow overflow

We see that computer hardware for binary addition of two n-bit numbers can be built

from logic gates designed to calculate the sum of three bits (pair of bits plus carry bit).

The transfer of the resulting carry bit forward to the addition of the next significant

pair of bits can be easily accomplished by proper wiring of the 3-bit adder gates.

30 Chapter 2



Signed Binary Numbers A binary system with n digits can generate a set of 2n dif-

ferent bit patterns. If we have to represent signed numbers in binary code, a natural

solution is to split this space into two equal subsets. One subset of codes is assigned

to represent positive numbers, and the other negative numbers. Ideally, the coding

scheme should be chosen in such a way that the introduction of signed numbers

would complicate the hardware implementation as little as possible.

This challenge has led to the development of several coding schemes for repre-

senting signed numbers in binary code. The method used today by almost all com-

puters is called the 2’s complement method, also known as radix complement. In a

binary system with n digits, the 2’s complement of the number x is defined as follows:

x ¼ 2n � x if x0 0

0 otherwise

�

For example, in a 5-bit binary system, the 2’s complement representation of �2

or ‘‘minusð00010Þtwo’’ is 25 � ð00010Þtwo ¼ ð32Þten � ð2Þten ¼ ð30Þten ¼ ð11110Þtwo. To
check the calculation, the reader can verify that ð00010Þtwo þ ð11110Þtwo ¼ ð00000Þtwo.
Note that in the latter computation, the sum is actually ð100000Þtwo, but since we are
dealing with a 5-bit binary system, the left-most sixth bit is simply ignored. As a rule,

when the 2’s complement method is applied to n-bit numbers, xþ ð�xÞ always sums

up to 2n (i.e., 1 followed by n 0’s)—a property that gives the method its name. Figure

2.1 illustrates a 4-bit binary system with the 2’s complement method.

An inspection of figure 2.1 suggests that an n-bit binary system with 2’s comple-

ment representation has the following properties:

Positive

numbers

Negative

numbers

0 0000

1 0001 1111 �1

2 0010 1110 �2

3 0011 1101 �3

4 0100 1100 �4

5 0101 1011 �5

6 0110 1010 �6

7 0111 1001 �7

1000 �8

Figure 2.1 2’s complement representation of signed numbers in a 4-bit binary system.

31 Boolean Arithmetic



m The system can code a total of 2n signed numbers, of which the maximal and

minimal numbers are 2n�1 � 1 and �2n�1, respectively.

m The codes of all positive numbers begin with a 0.

m The codes of all negative numbers begin with a 1.

m To obtain the code of �x from the code of x, leave all the trailing (least signifi-

cant) 0’s and the first least significant 1 intact, then flip all the remaining bits (convert

0’s to 1’s and vice versa). An equivalent shortcut, which is easier to implement in

hardware, is to flip all the bits of x and add 1 to the result.

A particularly attractive feature of this representation is that addition of any two

signed numbers in 2’s complement is exactly the same as addition of positive num-

bers. Consider, for example, the addition operation ð�2Þ þ ð�3Þ. Using 2’s comple-

ment (in a 4-bit representation), we have to add, in binary, ð1110Þtwo þ ð1101Þtwo.
Without paying any attention to which numbers (positive or negative) these codes

represent, bit-wise addition will yield 1011 (after throwing away the overflow bit). As

figure 2.1 shows, this indeed is the 2’s complement representation of �5.

In short, we see that the 2’s complement method facilitates the addition of any

two signed numbers without requiring special hardware beyond that needed for sim-

ple bit-wise addition. What about subtraction? Recall that in the 2’s complement

method, the arithmetic negation of a signed number x, that is, computing �x, is

achieved by negating all the bits of x and adding 1 to the result. Thus subtraction can

be easily handled by x� y ¼ xþ ð�yÞ. Once again, hardware complexity is kept to

a minimum.

The material implications of these theoretical results are significant. Basically, they

imply that a single chip, called Arithmetic Logical Unit, can be used to encapsulate

all the basic arithmetic and logical operators performed in hardware. We now turn to

specify one such ALU, beginning with the specification of an adder chip.

2.2 Specification

2.2.1 Adders

We present a hierarchy of three adders, leading to a multi-bit adder chip:

m Half-adder: designed to add two bits

m Full-adder: designed to add three bits

m Adder: designed to add two n-bit numbers

32 Chapter 2



We also present a special-purpose adder, called incrementer, designed to add 1 to a

given number.

Half-Adder The first step on our way to adding binary numbers is to be able to add

two bits. Let us call the least significant bit of the addition sum, and the most signif-

icant bit carry. Figure 2.2 presents a chip, called half-adder, designed to carry out

this operation.

Full-Adder Now that we know how to add two bits, figure 2.3 presents a full-adder

chip, designed to add three bits. Like the half-adder case, the full-adder chip pro-

duces two outputs: the least significant bit of the addition, and the carry bit.

Adder Memory and register chips represent integer numbers by n-bit patterns,

n being 16, 32, 64, and so forth—depending on the computer platform. The chip

whose job is to add such numbers is called a multi-bit adder, or simply adder. Figure

2.4 presents a 16-bit adder, noting that the same logic and specifications scale up as is

to any n-bit adder.

Incrementer It is convenient to have a special-purpose chip dedicated to adding the

constant 1 to a given number. Here is the specification of a 16-bit incrementer:

Inputs Outputs

a b carry sum

0 0 0 0 Half
Adder

a sum

b carry0 1 0 1

1 0 0 1

1 1 1 0

Chip name: HalfAdder

Inputs: a, b

Outputs: sum, carry

Function: sum = LSB of a + b

carry = MSB of a + b

Figure 2.2 Half-adder, designed to add 2 bits.

33 Boolean Arithmetic



a b c carry sum

0 0 0 0 0

Full
Adder

a
sum

b
carry

c

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Chip name: FullAdder

Inputs: a, b, c

Outputs: sum, carry

Function: sum = LSB of a + b + c

carry = MSB of a + b + c

Figure 2.3 Full-adder, designed to add 3 bits.

... 1 0 1 1 a

... 0 0 1 0 b
+

out
a

16

16-bit
Adder

b
16

16

... 1 1 0 1 out

Chip name: Add16

Inputs: a[16], b[16]

Outputs: out[16]

Function: out = a + b

Comment: Integer 2's complement addition.

Overflow is neither detected nor handled.

Figure 2.4 16-bit adder. Addition of two n-bit binary numbers for any n is ‘‘more of the
same.’’

34 Chapter 2



Chip name: Inc16

Inputs: in[16]

Outputs: out[16]

Function: out=in+1

Comment: Integer 2’s complement addition.

Overflow is neither detected nor handled.

2.2.2 The Arithmetic Logic Unit (ALU)

The specifications of the adder chips presented so far were generic, meaning that they

hold for any computer. In contrast, this section describes an ALU that will later be-

come the centerpiece of a specific computer platform called Hack. At the same time,

the principles underlying the design of our ALU are rather general. Further, our

ALU architecture achieves a great deal of functionality using a minimal set of inter-

nal parts. In that respect, it provides a good example of an efficient and elegant logic

design.

The Hack ALU computes a fixed set of functions out ¼ fiðx; yÞ where x and y are

the chip’s two 16-bit inputs, out is the chip’s 16-bit output, and fi is an arithmetic

or logical function selected from a fixed repertoire of eighteen possible functions. We

instruct the ALU which function to compute by setting six input bits, called control

bits, to selected binary values. The exact input-output specification is given in figure

2.5, using pseudo-code.

Note that each one of the six control bits instructs the ALU to carry out a certain

elementary operation. Taken together, the combined effects of these operations cause

the ALU to compute a variety of useful functions. Since the overall operation is

driven by six control bits, the ALU can potentially compute 26 ¼ 64 different func-

tions. Eighteen of these functions are documented in figure 2.6.

We see that programming our ALU to compute a certain function f ðx; yÞ is done
by setting the six control bits to the code of the desired function. From this point on,

the internal ALU logic specified in figure 2.5 should cause the ALU to output the

value f ðx; yÞ specified in figure 2.6. Of course, this does not happen miraculously, it’s

the result of careful design.

For example, let us consider the twelfth row of figure 2.6, where the ALU is

instructed to compute the function x-1. The zx and nx bits are 0, so the x input

is neither zeroed nor negated. The zy and ny bits are 1, so the y input is first

zeroed, and then negated bit-wise. Bit-wise negation of zero, ð000 . . . 00Þtwo, gives
ð111 . . . 11Þtwo, the 2’s complement code of �1. Thus the ALU inputs end up being x

35 Boolean Arithmetic



zx no

zr

nx zy ny f

ALU

ng

16
bits

16
bits

x

y 16
bits

out

f(x,y)

Chip name: ALU

Inputs: x[16], y[16], // Two 16-bit data inputs

zx, // Zero the x input

nx, // Negate the x input

zy, // Zero the y input

ny, // Negate the y input

f, // Function code: 1 for Add, 0 for And

no // Negate the out output

Outputs: out[16], // 16-bit output

zr, // True iff out=0

ng // True iff out<0

Function: if zx then x = 0 // 16-bit zero constant

if nx then x = !x // Bit-wise negation

if zy then y = 0 // 16-bit zero constant

if ny then y = !y // Bit-wise negation

if f then out = x + y // Integer 2's complement addition

else out = x & y // Bit-wise And

if no then out = !out // Bit-wise negation

if out=0 then zr = 1 else zr = 0 // 16-bit eq. comparison

if out<0 then ng = 1 else ng = 0 // 16-bit neg. comparison

Comment: Overflow is neither detected nor handled.

Figure 2.5 The Arithmetic Logic Unit.

36 Chapter 2



and �1. Since the f-bit is 1, the selected operation is arithmetic addition, causing the

ALU to calculate x+(-1). Finally, since the no bit is 0, the output is not negated

but rather left as is. To conclude, the ALU ends up computing x-1, which was

our goal.

Does the ALU logic described in figure 2.6 compute every one of the other seven-

teen functions listed in the figure’s right column? To verify that this is indeed the

case, the reader can pick up some other rows in the table and prove their respec-

tive ALU operation. We note that some of these computations, beginning with the

These bits instruct

how to preset

the x input

These bits instruct

how to preset

the y input

This bit selects

between

+ / And

This bit inst.

how to

postset out

Resulting

ALU

output

zx nx zy ny f no out=

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else

out=x&y

if no
then

out=!out f(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Figure 2.6 The ALU truth table. Taken together, the binary operations coded by the first six
columns effect the function listed in the right column (we use the symbols !, &, and | to rep-
resent the operators Not, And, and Or, respectively, performed bit-wise). The complete ALU
truth table consists of sixty-four rows, of which only the eighteen presented here are of interest.

37 Boolean Arithmetic



function f ðx; yÞ ¼ 1, are not trivial. We also note that there are some other useful

functions computed by the ALU but not listed in the figure.

It may be instructive to describe the thought process that led to the design of this

particular ALU. First, we made a list of all the primitive operations that we wanted

our computer to be able to perform (right column in figure 2.6). Next, we used

backward reasoning to figure out how x, y, and out can be manipulated in binary

fashion in order to carry out the desired operations. These processing requirements,

along with our objective to keep the ALU logic as simple as possible, have led to the

design decision to use six control bits, each associated with a straightforward binary

operation. The resulting ALU is simple and elegant. And in the hardware business,

simplicity and elegance imply inexpensive and powerful computer systems.

2.3 Implementation

Our implementation guidelines are intentionally partial, since we want you to dis-

cover the actual chip architectures yourself. As usual, each chip can be implemented

in more than one way; the simpler the implementation, the better.

Half-Adder An inspection of figure 2.2 reveals that the functions sumða; bÞ and

carryða; bÞ happen to be identical to the standard Xorða; bÞ and Andða; bÞ Boolean

functions. Thus, the implementation of this adder is straightforward, using pre-

viously built gates.

Full-Adder A full adder chip can be implemented from two half adder chips and

one additional simple gate. A direct implementation is also possible, without using

half-adder chips.

Adder The addition of two signed numbers represented by the 2’s complement

method as two n-bit buses can be done bit-wise, from right to left, in n steps. In step

0, the least significant pair of bits is added, and the carry bit is fed into the addition

of the next significant pair of bits. The process continues until in step n� 1 the most

significant pair of bits is added. Note that each step involves the addition of three

bits. Hence, an n-bit adder can be implemented by creating an array of n full-adder

chips and propagating the carry bits up the significance ladder.

Incrementer An n-bit incrementer can be implemented trivially from an n-bit adder.

38 Chapter 2



ALU Note that our ALU was carefully planned to effect all the desired ALU

operations logically, using simple Boolean operations. Therefore, the physical imple-

mentation of the ALU is reduced to implementing these simple Boolean operations,

following their pseudo-code specifications. Your first step will likely be to create a

logic circuit that manipulates a 16-bit input according to the nx and zx control bits

(i.e., the circuit should conditionally zero and negate the 16-bit input). This logic can

be used to manipulate the x and y inputs, as well as the out output. Chips for bit-

wise And-ing and addition have already been built in this and in the previous chap-

ter. Thus, what remains is to build logic that chooses between them according to the

f control bit. Finally, you will need to build logic that integrates all the other chips

into the overall ALU. (When we say ‘‘build logic,’’ we mean ‘‘write HDL code’’).

2.4 Perspective

The construction of the multi-bit adder presented in this chapter was standard,

although no attention was paid to efficiency. In fact, our suggested adder implemen-

tation is rather inefficient, due to the long delays incurred while the carry bit prop-

agates from the least significant bit pair to the most significant bit pair. This problem

can be alleviated using logic circuits that effect so-called carry look-ahead techniques.

Since addition is one of the most prevalent operations in any given hardware plat-

form, any such low-level improvement can result in dramatic and global perfor-

mance gains throughout the computer.

In any given computer, the overall functionality of the hardware/software plat-

form is delivered jointly by the ALU and the operating system that runs on top of it.

Thus, when designing a new computer system, the question of how much function-

ality the ALU should deliver is essentially a cost/performance issue. The general rule

is that hardware implementations of arithmetic and logical operations are usually

more costly, but achieve better performance. The design trade-off that we have

chosen in this book is to specify an ALU hardware with a limited functionality and

then implement as many operations as possible in software. For example, our ALU

features neither multiplication nor division nor floating point arithmetic. We will

implement some of these operations (as well as more mathematical functions) at the

operating system level, described in chapter 12.

Detailed treatments of Boolean arithmetic and ALU design can be found in most

computer architecture textbooks.

39 Boolean Arithmetic



2.5 Project

Objective Implement all the chips presented in this chapter. The only building

blocks that you can use are the chips that you will gradually build and the chips

described in the previous chapter.

Tip When your HDL programs invoke chips that you may have built in the previ-

ous project, we recommend that you use the built-in versions of these chips instead.

This will ensure correctness and speed up the operation of the hardware simulator.

There is a simple way to accomplish this convention: Make sure that your project

directory includes only the .hdl files that belong to the present project.

The remaining instructions for this project are identical to those of the project

from the previous chapter, except that the last step should be replaced with ‘‘Build

and simulate all the chips specified in the projects/02 directory.’’

40 Chapter 2


